Quantum dynamics study of fulvene double bond photoisomerization: the role of intramolecular vibrational energy redistribution and excitation energy.
نویسندگان
چکیده
The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.
منابع مشابه
The Influence of Cation-π Interactions on the Strength and Nature of Intramolecular O...H Hydrogen Bond in Orthohydroxy Benzaldehyde Compound
The influence of cation-π interactions on the strength and nature of intramolecular O...H hydrogen bond has been investigated by quantum chemical calculations in orthohydroxy benzaldehyde (HBA) compound. Ab initio calculations have been performed at MP2/6-311++G** level of theory. Vibrational frequencies and physical properties such as chemical potential and chemical hardness of these compounds...
متن کاملOn the origin of mode- and bond-selectivity in vibrationally mediated reactions on surfaces.
The experimental observations of vibrational mode- and bond-selective chemistry at the gas-surface interface indicate that energy redistribution within the reaction complex is not statistical on the timescale of reaction. Such behavior is a key prerequisite for efforts to use selective vibrational excitation to control chemistry at the technologically important gas-surface interface. This paper...
متن کاملReaction Dynamics of NH2+OH on an Interpolated Potential Energy Surface
QCT calculations were performed to study the behavior of energized NH2OH formed by association collision of NH2 radical with OH radical. A potential energy surface that describes the behavior of the title reaction has been constructed by interpolation of ab initio data. H2O, HON, HNO, NH3, O, H2NO, cis or trans-HONH, and H products and two vibrationally energized NH2OH and NH3O adducts were obs...
متن کاملQuantum-classical modeling of photoisomerization of polyatomic molecules.
A new method, non-Markovian quantum-classical approximation (NQCA), is suggested to model the photoisomerization of polyatomic molecules. The NQCA method can be successfully applied to follow the photoisomerization process for a wide class of reacting systems, namely, those for which the time scale required for the equilibration in the phase space of the potential energy surface (PESs) is short...
متن کاملReal - time dynamics of clusters . III . I , Ne , ( n = 2 - 4 ) , picosecond fragmentation , and evaporation
In this paper (III) we report real-time studies of the picosecond dynamics of iodine in Ne clusters IzNe,( Iz = 2-4) + IT + nNe. The results are discussed in relation to vibrational predissociation (VP), basic to the 1,X systems, and to the onset of intramolecular vibrational-energy redistribution (IVR). The latter process, which is a precursor for the evaporation of the host atoms or for furth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 135 13 شماره
صفحات -
تاریخ انتشار 2011